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Sociopathic Knowledge Bases:

Correct Knowledge Can be Harmful
Even Given Unlimited Computation

David C. Wilkins and Yong Ma

Department of Com:puter Science
University of Ilinois
405 North Mathews Avenue
Urbana, IL 61801

Abstract

This paper studies a situation is which correct knowledge is harmful to a preblem
solver even given unlimited computational resources. A knowledge base is defined to be
sociopathic if all the tuples in the knowledge base are individually judged to be correct
and a subset of the knowledge base gives better performance than the original knowledge
base independent of the amount of computational resources that are available. Almost all
knowledge bases that contain probabilistic rules are shown to be sociopathic and so this
problem is very widespread.

Sociopathicity has important consequences for rule induction methods and rule set
debugging methods. Sociopathic knowledge bases cannot be properly debugged using the
widespread practice of incremental modification and deletion of rules responsible for wrong
conclusions a la Teiresias; this approach fails to converge to an optimal solution. The
problem of optimally debugging sociopathic knowledge bases is modeled as a bipartite graph
minimization problem and shown to be NP-hard. Our heuristic solution approach is called
the Sociopathic Reduction Algorithm and experimental results verify its efficacy.
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1 Introduction

Reasoning under uncertainty has been widely investigated in artificial intelligence. Prob-
abilistic approaches are of particular relevance to rule-based expert systems, where one is
interested in modeling the heuristic and evidential reasoning of experts. Methods devel-
oped to represent and draw inferences under uncertainty include the certainty factors used
in Mycin (Buckanan and Shortliffe, 1984), fuzzy set theory (Zadeh, 1979), and the belief
functions of Dempster-Shafer theory (Shafer, 1976) (Gordon and Shortliffe, 1985). In many
expert system frameworks, such as Emycin, Expert, MRS, S.1, and Kee, the rule structure
permits a conclusion to be drawn with varying dcgrees of certainty or belief. This paper

addresses a concern common to all these methods and systems.

In refining and debugging a probabilistic rule set, there are three major causes of
errors: missing rules, wrong rules, and deleterious interactions between good rules. The
purpose of this paper is to explicate a type of deleterious interaction and to show that it (a)
is indigenous to rule sets for reasoning under uncertainty, (b) is of a fundamentally different
nature from missing and wrong rules, (c) cannot be handled by traditional methods for

correcting wrong and missing rules, and (d) can be handled by the method described in this

paper.

In section 2, we describe the type of deleterious rule interactions that we have en-
countered in connection with automatic induction of rule sets, and explain why the use of
most rule modification methods fails to grasp the nature of the problem. In section 3, we
discuss approaches to debugging and refining rule sets and explaia why traditional rule set
debugging methods are inadequate for hardling global interactions. In section 4, we for-
mulate the problem of reducing deleterious iuteractions as a bipartite graph minimization
problem and show that it is NP-hard. In section 5, we present a heuristic method called
the Sociopathic Reduction Algorithm. Finally, our experiences in using the Sociopathic
Reduction Algorithm are described.

A brief description of terminology will be helpful to the reader. Assume there exists
a collection of training instances, each represented as a set of feature-value pairs of evidence

and a set of hypotheses.




Rules are in Horn clause form: conclude(H, CF) :— E , where E is a conjunction of

evidence, H is a hypothesis, and CF is a certainty factor or its equivalent.

A rule that correctly confirms a hypothesis generates true positive evidence; one that
correctly disconfirms a hypothesis generates true negative evidence. A rule that incorrectly
confirms a hypothesis generates false positive evidence; one that incorrectly disconfirms a
hypothesis generates false negative evidence. False positive and false negative evidence can

lead to misdiagnoses of training instances.

2 Inexact Reasoning and Rule Interactions

When operating as an evidence-gathering system (Buchanan and Shortliffe, 1984), an ex-
pert system accumulates evidence for and against corapeting hypotheses. Each rule whose
preconditions match the gathered data contributes either positively or negatively toward
one or more hypotheses. Unavoidably, the preconditions of probabilistic rules succeed on
instances where the rule will be contributing false positive or false negative evidence for

conclusions. For example, consider the following rule:

conclude(klebsiella, 0.77) :— (R1)
finding(surgery, yes),

finding(gram_neg_infection, yes)

The frequency with which R1 generates false positive evidence has a major influence
on its CF of 0.77, where —1 < CF < 1. Indeed, given a representative set of training
instances, such as a library of medical cases, the certainty factor of a rule can be given
a probabilistic interpretation! as a function G(zi,z3, 23), where z; is the fraction of the
positive instances of a hypothesis where the rule premise succeeds, thus contributing true
positive or false negative evidence; z, is the fraction of the negative instances of a hypothesis

where the rule premise succeeds, thus contributing false positive or true negative evidence;

1See Appendix 1 for a description of the function G. The calculations of G give a purely statistical inter-
pretation to CFs, and hence do not incorporate orthogonal utility measures as was done in MYCIN(Buchanan
and Shortliffe, 1984).




and z3 is the ratio of positive instances of a hypothesis to all instances in the training
set. For R1 in our domain, G(.43,.10,.22) = 0.77 by the formulas in Appendix A, because

statistics on 104 training instances yield the following values:

z, : E true among positive instances = 10/23
zy: E true among negative instances = 8/81 (1)
z3: H true among all instances = 23/104

Hence, R1 generates false positive evidence on eight instances, some of which may
lead to false negative diagnoses. But whether they do or not depends on the other rules
in the system; hence our emphasis on taking a global perspective. The usual method of
dealing with situations such as this is to make the rule fail less often by specializing its
premise (Michalski et al., 1983). For example, surgery could be specialized to neurosurgery,
and we could replace R1 with:

conclude(klebsiella, 0.92) :— (R2)
finding(neurosurgery, yes),

finding(gram_neg_infection, yes)

On our case library of training instances for the R2 rule, G(.26,.02,.22) = 0.92, so R2
makes erroneous inferences in two instances instead of eight. Nevertheless, modifying R1
to be R2 on the grounds that R1 contributes to a misdiagnosis is not always appropriate;
we offer three objections to this frequent practice. First, both rules are inezact rules that
offer advice in the face of limited information, and their relative accuracy and correctness is
explicitly represented by their respective CFs. We expect them to fail, hence failure should
not necessarily lead to their modification. Second, all probabilistic rules reflect a trade-off
between generality and specificity. An overly general rule provides too little discriminatory
power, and a overly specific rule contributes too infrequently to problem solving. A policy
on proper grain size is explicitly or implicitly built into rule induction programs; this policy
should be followed as much as possible. Specialization produces a rule that usually violates
such a policy. Third, if the underlying problem for an incorrect diagnosis is rule interactions,
a more specialized rule, such as the specialization of R1 to R2, can be viewed as creating

a potentially more dangerous rule. Although it only makes an incorrect inference in two




instead of eight instances, these two instances will be now harder to counteract when they
contribute to misdiagnoses because R2 is stronger. Note that a rule with a large CF is more
likely to have its erroneous conclusions lead to misdiagnoses. This perspective motivates the

prevention of misdiagnoses in ways other than the use of rule specialization or generalization.

Besides rule modification, another common method of nullifying the incorrect infer-
ence of a rule in an evidence-gathering system is to introduce counteracting rules. In our
example, these would be rules with a negative CF that concludes Klebsiella on the false
positive training instances that lead to misdiagnoses. But since these new rules are prob-
abilistic, they will introduce false negatives on some other training instances, and these
may lead to misdiagnoses. We could add yet more counteracting rules with a positive CF
to nullify any problems caused by the original counteracting rules, but these additional
rules introduce false positives on yet other training instances, and these may lead to other
misdiagnoses. Also, a counteracting rule is often of less quality in comparison to rules in
the original rule set; if it were otherwise the induction program would have included the
counteracting rule in the original rule set. Clearly, adding counteracting rules may not be

necessarily the best way of dealing with misdiagnoses made by probabilistic rules.

3 Debugging Rule Sets and Rule Interactions

Assume we are given a set of probabilistic rules that were either automatically induced from
a set of training cases or created manually by an expert and knowledge engineer. In refining
and debugging this probabilistic rule set, there are three major causes of errors: missing
rules, wrong rules, and unexpected interactions among good rules. We first describe types of

rule interactions, and then show how the traditional approach to debugging is inadequate.

3.1 Types of rule interactions

In a rule-based system, there are many types of rule interactions. Rules interact by chaining
together, by using the same evidence for different conclusions, and by drawing the same
conclusions from different collections of evidence. Thus one of the lessons learned from

research on MYCIN was that complete modularity of rules is not possible to achieve when




rules are written manually (Buchanan and Shortliffe, 1984). An expert uses other rules in a
set of closely interacting rules in order to define a new rule, in particular to set a CF value

relative to the CFs of interacting rules.

Automatic rule induction systems encounter the same problems. Moreover, automatic
systems lack an understanding of the strong semantic relationships among concepts to allow
judgments about the relative strengths of evidential support. Instead, induction systems
use biases to guide the rule search (Michalski et al., 1983). The rule sets that are later
analyzed for sociopathicity in this paper were generated by the induction subsystem of
ODYSSEUS. The inductive biases used in this system are rule generality, whereby a rule
must cover a certain percentage of instances; rule specificity, whereby a rule must be above
a minimum discrimination threshold; rule colinearity, whereby rules must not be too similar
in classification of the instances in the training set; and rule simplicity, whereby a maximum

bound is placed on the number of conjunctions and disjunctions (Wilkins, 1987).

3.2 Traditional methods of debugging a rule set

The standard approach to debugging a rule set consists of iteratively performing the fol-

lowing steps:

e Step 1. Run the system on cases until a false diagnosis is made.

o Step 2. Track down the error and correct it, using one of five methods pioneered by

Teiresias (Davis, 1982) and used by knowledge engineers generally:

Method 1: Make the preconditions of the offending rules more specific or some-

times more general.?

— Method 2: Make the conclusions of offending rules more general or sometimes

more specific.

Method 3: Delete offending rules.

Method 4: Add new rules that counteract the effects of offending rules.

?Ways of generalizing and specializing rules are nicely described in (Michalski et al., 1983). They include
dropping conditions, changing constants to variables, generalising by internal disjunction, tree climnbing,
interval closing, exception introduction, etc.




— Method 5: Modify the strengths or CFs of offending rules.

This approach may be sufficient for correcting wrong and missing rules. However,
it is flawed from a theoretical point of view, with respect to its sufficiency for correcting
problems resulting from the global behavior of rules over a set of cases. It possesses two
serious methodological problems. First, using all five of these methods is not necessarily
appropriate for dealing with global deleterious interactions. In section 2 we explained
why in some situations modifying the offending rule or adding counteracting rules leads to
problems, and misses the point of having probabilistic rules, and this eliminates methods 1,
2 and 4. If rules are being induced from a representative set of training cases, modifying the
strength of the rule is illegal, since the strength of the rule has a probabilistic interpretation,
being derived from frequency information derived from the training instances, and this
eliminates method 5. Only method 3 is left to cope with deleterious interactions. The
second methodological problem is that the traditional method picks an arbitrary case to
run in its search for misdiagnoses. Such a procedure will often not converge to a good
rule set, even if modifications are restricted to rule deletion. The example in section 5.2

illustrates this situation.

Our perspective on this topic evolved in the course of experiments in induction and
refinement of knowledge bases. Using “better” induction biases did not always produce
rule sets with better performance, and this prompted investigating the possibility of global
probabilistic interactions. Our original approach to debugging was similar to the Teiresias
approach. Often, correcting a problem led to other cases being misdiagnosed, and in fact this
type of automated incremental debugging seldom converged to an acceptable set of rules. It
might have if we we engaged in the common practice of “tweaking” the CF strengths of rules.
However this was not permissible, since our CF values were derived from a representaiive

set of training cases, and have a precise probabilistic interpretation,

4 Minimizing Sociopathic Interactions

Assume there exists a large set of training instances, and a rule set for solving these instances
has been induced that is fairly complete and contains rules that are individually judged to be

good. By good, we mean that they individually meet some predefined quality standards such




as the biases described in section 3.1. Further, assume that the rule set misdiagnoses some
of the instance. in the training set. Given such an initial rule set, the problem is to find a
rule set that meets some optimality criteria, such as to minimize the number of misdiagnoses
without violating the goodness constraints on individual rules. Now modifications to rules,
except for rule deletion, generally break the predefined goodness constraints. And adding
other rules is not desirable, for if they satisfied the goodness constraints they would have
been in the original rule set produced by the induction program. Hence, if we are to find a
solution that meets the described constraints, the solution must be a subset of the original

rule set.> More formally:

Definition 1 (Sociopathic Knowledge Base) A knowledge base is sociopathic if and
only if (1) all t.e tuples in the knowledge base are individually judged to be good; and (2)
a subset of the knowl:dge base gives better performance than the original knowledge base

tndependent of the amount of available computational resources.

By the definition of a sociopathic knowledge base, the best rule set is viewed as the
element of the power set of rules in the initial rule set that yields a global minimum weightcd
error. A straightforward approach is to examine and compare all subsets of the rule set.
However, the power set is almost z'ways too large to work with, especially when the initial
set has deliberately been generously generated. The selection process can be modeled as a

bipartite graph minimization problem as follows.

4.1 Bipartite graph minimization formulation

A bipartite graph G = (V, E) is a graph whose vertices V can be partitioned into two sets
Vi and V; so that every edge in F joins a vertex in V] to a vertex in V,. For each hypothesis
in the set of training instances, define a directed bipartite graph G = (V, F), with its
vertices V partitioned into two sets I and R, as shown in Figure 1. Elements of R represent
rules, and the evidential strength of R; is denoted by CF;. Each vertex in I represents a
training instance; for positive instances M; is 1, and for negative instances M; is —1. Arcs

(Rj,I;] connect a rule in R with the training instances in I for which its preconc tions are

3If we discover that this solution is inadequate for our needs, then introducing rules that violate the
induction biases is justifiable.




satisfied; the weight of arc [R;,I;] is CF;. The weighted arcs terminating in a vertex in [
are combined using an evidence combination function F, which is defined by the user. The
combined evidence classifies an instance as a positive instance if the combined evidence is
above a user specified threshold CF;. In the example in section 5.2, CF, is 0, while for
Mycin, CF, is 0.2.

Instance Set Rule Set

I (M) e R; (CF,)
I, (M2) e— R, (CF3)
Im(Mm) @ e R, (CFy)

Figure 1: Bipartite Graph Formulation. The left hand nodes, I,..., I,
represent a case library of m training instances, where M; indicates
whether an instance is a positive or negative example of a hypothesis.
The right hand nodes, R,,..., R, represent a knowledge base of prob-
abilistic rules, where CFj is the strength of the rule. The links show
which training instances I, ..., I, satisfy the preconditions of rule R;.

More formally, assume that I,..., I, = training set of instances, and R,,...,R, =

rules of an initial rule set. Then we want to minimize:
m
z = Z b;e; (2)
=1

subject to the constraints

I
p—t

0 if F(aiir1,...,GinTn) > CF,  for M; =
ei=1¢ 0 if Flai1r1,...;8inTn) < CF, for M;

1 otherwise

it

|
—
—_

w
e
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er 2 er’n (4)

where

b; = bias constant to preferentially favor instances;
ri = if R; is in solution rule set then 1 else 0;

a;; = if arc [R;, I;] exists then C'F;j else 0;

CF, = the CF threshold for positive classification;

F = n-ary function for combining CFs, where

the time to evaluate is polynomial in n;

R,nin = minimum number of rules in solution set;

The problem is to find a subset of R such that the global weighted error z is minimum.
That is, the solution formulation solves for rj; if r; = 1 then rule R; is in the final rule
set. The main tasks of the user are to specify the evidence combination function F and
to set up the a;; matrix, which associates rules and instances and indicates the strength of
the the associations. Note that the value of a;; is zero if the preconditions of R; are not
satisfied in instance I;. Preference can be given to particular instances via the bias b; in the
objective function z. For instance, the user may wish to favor the selection of rules that
will not misdiagnose certain instances by setting the corresponding b; to a very high value.
The R,,;, constraint forces the solution rule set to be above a minimum size. This prevents
finding a solution that is too specialized for the training set, giving good accuracy on the

training set but having a high variance on other sets, which would lead to poor performance.

Theorem 1 The bipartite graph minimization problem for heuristic rule set optimization

is NP-hard.

Proof: To show that the bipartite graph minimization problem (BGMP) is NP-hard, we
shall reduce Satisfiability problem (SAT) to it. The major difficulty is that we have to use

11




numerical combination functions to determine logical truth values of clauses. Assume there
are [ boolean variables A,,..., A; and k clauses C,,Cy,...,Ci, where C; is a disjunction of

some literals. For example, C;, = A; V A3V A,.

1. Input transformation: SAT clauses are mapped into graph instance nodes and the
atoms of the clauses are mapped into rule nodes. Arcs connect rule nodes to instance nodes
when the respective literals appear in the respective clauses. Let m = k and n = I. Let
each clause represent a positive instance, then set M; = 1for 1 <i < m. Let CFj to be 1
for j =1,2,...,n. For each instance node I; (corresponding to C;), define the combination

function as follows: n

F(air1y@in™s) = 1~ H(l - g(aijr;)) (5)
1=1
where
a;;r; if A; appears in C;
g(aijr;) =< 1~air; if A; appears in C; (6)
0 otherwise

Note that a;; = CF; = 1 if either A; or A; appears in C;. Thus the g(a;jr;) function can
be simplified to:

r; if A; appears in C;
g(aijr;) = ¢ 1—r; if A; appears in C; (7)
0 otherwise

Since every clause is of the same importance, let b; = 1 for all 1, for the objective
function z. Let R,.in = 0 to make its associate constraint trivially true. Finally, choose

CF, to be 0.

2. Output transformation: The output transformation is that (1) if R; remains in
the final rule set, A; is assigned to be true; otherwise, it is assigned to be false; (2) SAT is

satisfied only if z = 0, i.e., all the instances are correctly classified.

3. Justification: First, it is clear that the input and output transformations can be
performed in polynomial time. Second, we will show that C; is satisfied iff the corresponding
I; is correctly classified in the final rule set, i.e., e; = 0. To help understand the functionality

of g(ai;r;), let us rewrite it as follows:

12
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1 if Aj appears in C; and r; = 1, or
g(aij"'j) = if li,- appears in C; and r; = 0 (3)
0 otherwise

If part: Assume that e; = 0, i.e., F(a;171,...,@in",) > 0 (F must be 1), then at least
one g(ai;r;) is 1. By the definition of g(a;;r;) above, either A; appears in C; and r; =1 or
A; appears in C; and r; = 0. In either case, according to the output transformation, the

corresponding clause C; is satisfied (true).

Jnly if part: Assume that C; is satisfied by the truth assignment in the final rule
set. Then there must exist some atom A; such that either A; is in C; and it is assigned to
be true or A; is in C; and assigned to be false. In either case, g(a;;r;) = 1, by the output
transformation and the definition of the function. Therefore, F(a; ry,...,ainrn) = 1 and

e; = 0.

To summarize, g(a;;r;) being 1 corresponds intuitively to the positive contribution

made by A4; to C;.

Finally, it’s shown that SAT is satisfiable iff BGMP so constructed has a minimum
objective value 0. If BGMP has a solution with z = 0, then e; = 0 for all ¢, because
b; = 1. Therefore each C; is satisfied and thus SAT is satisfiable. Conversely, if the SAT
is satisfiable then each C; can be satisfied by some truth assignment of atoms. Clearly,
the final rule set of the BGMP formulation (of SAT) can be easily constructed with z = 0,

according to that assignment. O

Corollary 1 Given a positive real number B, the problem of determining if there ezists
a rule set whose global weighted error z is less than or equal to B in the bipartite graph

formulation for heuristic rule set optimization is NP-complete.

Proof: To show that this decision problem is in NP, we notice that it is easy to construct
a polynomial algorithm for checking whether or not the (weighted) number of misdiagnosis
by any given subset of R is less than or equal to B. It is NP-hard by an argument similar
to that in the proof of the above theorem. O

13




5 Sociopathic Reduction Algorithm

In this section, a heuristic method called the Sociopathic Reduction Algorithm is described,

and an example is provided based on the graph shown in Table 1.

5.1 The Sociopathic Reduction Algorithm

The following heuristic hill-climbing search method, the Sociopathic Reduction Algorithm,

is one that we have developed and used in our experiments:

e Step 1. Assign values to penalty constants. Let p; be the penalty assigned to a
poison rule. A poison rule is a strong rule giving erroneous evidence for a case that
cannot be counteracted by the combined weight of all the rules in the rule base that
give correct evidence. Let p; be the penalty for contributing false positive evidence
to a misdiagnosed case, p; be the penalty for contributing false negative evidence to
a misdiagnosed case, py be the penalty for contributing false positive evidence to a
correctly diagnosed case, ps be the penalty for contributing false negative evidence
to a correctly diagnosed case, and pg be the penalty for using weak rules. Let h be
the maximum number of rules that are removed at each iteration. Let R,,;, be the

minimum size of the solution rule set.

e Step 2. Optional step for very large rule sets: given an initial rule set, create a new

rule set containing the n strongest rules for each case.

o Step 3. Find all misdiagnosed cases for the rule set. If none exists, stop. Otherwise,
collect and rank the rules that contribute evidence toward these erroneous diagnoses.
The rank of rule R; is 3%, pin;, where:

- ny; = 1 if R; is a poison rule or its deletion leads to the creation of another

poison rule and 0 otherwise.

ny; = the number of misdiagnoses for which R; gives false positive evidence;
— n3;j = the number of misdiagnoses for which R; gives false negative evidence;

~ n4j = the number of correct diagnoses for which R; gives false positive evidence;

14




— ng; = the number of correct diagnoses for which R; gives false negative evidence;

— ng; = the absolute value of the CF of R;;
o Step 4. Eliminate the h highest ranking rules.

Step 5. If the number of misdiagnoses is decreased, go to step 3.

¢ Step 6. Else, if the number of misdiagnoses begins to increase and h # 1, then

— Undo the last deletion, i.e., take back the most recently removed hk rules.?
-h—~h-15

— Goto step 3.

Step 7. Otherwise, i.e., if the number of misdiagnoses is increased and 4 = 1, then

undo the last rule deletion; output the final rule set and stop.

Each iteration of the algorithm produces a new rule set, and each rule set must be
rerun on all training instances to locate the new set of misdiagnosed instances. If this is par-
ticularly difficult to do, the & parameter in step 4 can be increased, but there is the potential
risk of converging to a suboptimal solution. For each misdiagnosed instance, the automated
reasoning system that uses the rule set must be able to explain which rules contributed to

a misdiagnosis. Hence, we require a system with good explanation capabilities.

The nature of an optimal rule set differs between domains. Penalty constants, p;,
are the means by which the user can define an optimal policy. For instance, via p, and
P3, the user can favor false positive over false negative misdiagnoses, or visa versa. For
medical expert systems, a false negative is often more damaging than a false pcsitive, as
false positives generated by a medical program can often be caught by a physician upon

further testing. False negatives, however, may be sent home, never to be seen again.

In our experiments, the value of the six penalty constants was p; = 10°-%. The h
constant determines how many rules are removed on each iteration, and its value is about
5. Rpmin is the minimum size of the solution rule set, usually about 90% of the original set;

its usefulness was described in section 4.1.

It is this step that makes it a hill-climbing algorithm.
®Since the h is usually small, say about 5, the next incremental step of 1 is the simplest, although the
more complicated schema of step decrements can be implemented for a relatively big number of h,
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I\R Ry(+.33)* R3(+.75) R3(+.33) | Re(--33)* Rs(-.75)° Re(-.33)
Iy(+) X

L(+) X X

I(+) X X X

I3(+) X X X

I(+)* X X X X

Ig(-)* X X X

Ig(-)t X X X X
I7(-)

Ig(-) X X X

Iy(-) X

Table 1: An example for Sociopathic Reduction algorithm. There are
ten training instances that are classified as positive (+) or negative (—)
instances of the hypothesis. There are six rules shown with their CF
strength. The marks indicate the instances to which the rules apply, i.e.,
when an instance satisfies the premises clauses of a rule.

5.2 Example of sociopathic reduction

In this example, which is illustrated in Table 5.1, there are ten training instances Ig, ..., Ig,
classified as positive or negative instances of the hypothesis. There are six rules R;,..., Rg
shown with their CF strength. The marks (x) indicate the instances to which the rules
apply, i.e., when an instance satisfies the premises clauses of a rule. To simplify the example,
define the combined evidence for an instance as the sum of the evidence contributed by all
applicable rules, and let CF, = 0. Rules with a CF of one sign that are connected to an
instance of the other sign contribute erroneous evidence. Two cases in the example are
misdiagnosed: I, and Is. The objective is to find a subset of the rule set that minimizes the
number of misdiagnoses. Before the details are examined, the following points concerning

examples should be made.

First, it can be shown that it is impossible to have an example using rules with out
degree less than 5 that has all the points to be made from this example, if there are the equal
number of positive and negative training instances. The argument is trivial for the rules
with out degree of 1 and 2. For a rule with out degree of 3, assume that it has a positive CF

value and is to be deleted. Then, it must misdiagnose some negative instance to become a
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rule to be blamed. And, in order to have a positive CF, it must provide (positive) evidence
for two positive instances, provided that the number of positive instances is equal to that
of negative instances. Therefore, the number of correct diagnoses for which it gives false
positive evidence must be zero, since the only negative instance that it connects to is the
misdiagnosed one. Then, its ranking vector is (nj, nzj, naj, n4j, nsj, ne;) = (0,1,0,0,0,CF)
which results in the smallest ranking quantity that a blamed rule with positive CF can have.
Thus, the algorithm will not guarantee to chose it for deletion. The argument for rules with
out degree of 4 is similar to the above, or the CF values are zeroes if the rules connect
to two positive instances and two negative ones. It may be possible to devise a heuristic

algorithm which gives a better computational performance from this observation.

The second point to make is that the CF values attached to the rules are the real
values that are calculated based on the formula given in the appendix. Take R;(+.33) for

example.
z; : E true among positive instances = 3/5
z3: E true among negative instances = 2/5 (9)
z3: H true among all instances = 5/10
Then,
z,z
zq = L = 0.60 (10)

z123 + 22(1 — 23)

Since z4 > z3,

T4 — 23 1
= —=-=-=10.33
CF= =3 (11)

Now the examination of the example is to be preceded. Assume that the final rule
set must have at least four rules, hence Rpin = 4. Let p; = 1087, for 0 < i < 5, thus

choosing rules in the highest category, and using lower categories to break ties.

On the first iteration, two misdiagnosed instances are found, I and I5, and four rules
contribute erroneous evidence toward these misdiagnoses, R;, Rz, Rq,and Rs. Their ranking

vectors are shown in Table 2. Clearly, R, has the highest ranking quantity 3°%_, pinij, thus
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My M2j N3 N4 Ns; Nej
RO 1 0 1 0 033
R,y 0 1 0 0 0 075
Re1 O o 1 o0 1 o033
Rg| 0 0o 1 0 0 075

Table 2: The ranking vectors of blamed rules

it is chosen for deletion. On the second iteration, one misdiagnosis is found, I, and two
erroneous rules contribute erroneous evidence, Ry and R5;. Rules are ranked and R, is
deleted. This reduces the number of misdiagnoses to zero and the algorithm successfully

terminates.

The same example can be used to illustrate the problem of the traditional method of
rule set debugging, where the order in which cases are checked for misdiagnoses influences
which rules are deleted. Consider a Teiresias style program that looks at training instances
and discovers I4 is misdiagnosed. There are two rules that contribute erroneous evidence to
this misdiagnosis, rules R4 and Rs. It wisely notices that deleting R, causes Ig to become
misdiagnosed, hence increasing the number of misdiagnoses; so it chooses to delete Rj.
However, no matter which rule it now deletes, there will always be at least one misdiagnosed
case. To its credit, it reduced the number of misdiagnoses from two to one; however, it fails

to converge to an rule set that minimizes the number of misdiagnoses.

5.3 Experience with the Sociopathic Reduction Algorithm

Some preliminary experiment with the Sociopathic Reduction Algorithm has been com-
pleted, using the Mycin case library which is a collection of 112 solved cases that were
obtained from records at the Stanford Medical Hospital. The rule set of about 370 rules
was the one after (1) correcting an incorrect domain theory, and (2) using apprenticeship
learning to extend an incomplete domain theory (Wilkins and Tan, 1989). The Sociopathic
Reduction Algorithm removed 21 rules from the knowledge base after 8 iterations. In Table

3, it is shown that about 10% improvement over the knowledge base tested is obtained.

Although our work is pretty much theoretical research oriented one example of ex-

periments is not sufficient by any means. Thus, our ongoing experiments involve two kinds
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Disease Number || Before Reduction || After Reduction
Cases

TP | FN | FP TP | FN | FP
Bacterial Meningitis 16 14 | 2 13 12 { 4 4
Brain Abscess 7 1 6 0 1 6 0
Cluster Headache 10 8 2 0 8 2 0
Fungal Meningitis 8 3 5 ] 4 4 0
Migraine 10 6 4 0 7 3 0
Myco-TB Meningitis | 4 4 0 1 4 0 3
Primary Brain Tumor | 16 3 13 {0 10 | 6 1
Subarach Hemorrhage | 21 16 |5 3 16 |5 4
Tension Headache 9 8 1 3 8 1 1
Viral Meningitis 11 10 |1 12 10 |1 6
None 0 0 0 7 0 0 12
Totals 112 73 139 |39 80 (32 |32

of tests.

30% each, so that it can be shown that the performance improvement is carried over to the
validation set. To be more accurate, we would like to randomly split the cases five times
and then average the improvements. Second, we like to apply the method just described to

various knowledge bases available, for example, a knowledge base after correction of wrong

Table 3: The Sociopathic Reduction Algorithm, when applied to this
knowledge base, improves the performance by about 10%.

First, we divide the cases into a training set and a validation set with 70% vs.

rules only, a knowledge base after case-based learning application, and so on.
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6 Related Work

The original contribution of this paper is to show that correct knowledge can be harmful
independent of problem-solving efficiency and that this problem is widespread. Another
contribution is to show that the problem of harmful knowledge can be minimized and
problem-solving performance improved by a particular form of knowiedge base reduction,
and that the optimal reduction is NP-hard.

The theme of correct knowledge being harmful has been studied by a number of other
investigators. Minton has investigated how the learning of correct search control knowledge
can slow down a problem solver; his solution approach is to quantify the potential utility
of a new piece of control knowledge and only add those with a high utility (Minton and
Carbonell, 1987). Markovitch and Scott have shown that any deductively learned knowledge
effects the cost of searching a problem space; their solution approach is to use filter functions
that can determine whether a piece of past knowledge that has been deductively learned
should be used on a current problem (Markovitch and Scott, 1989). Still another approach
is to modify learned search control knowledge to increase problem-solving speed (Prieditis

and Mostov, 1987).

The theme of improving problem-solving accuracy via knowledge base reduction has
been studied in conjunction with eliminating or reducing wrong knowledge. For example,
the genetic algorithm used in conjunction with a classifier system eliminates as much as half
of a knowiedge base; it elimirates rules that has not contributed to past problem-solving
successes (Holland, 1986). Another approach is to perform a global analysis of a knowledge

base and eliminate those rules that are redundant or inconsistent (Ginsberg et al., 1988).

Learning systems that perform induction from noisy training instances have also
addressed the problem of wrong knowledge. The RULEMOD program of META-DENDRAL
selects a subset of rules that have wide applicability, thereby reducing the number of wrong
rules (Buchanan and Mitchell, 1978). RULEMOD also selects rules that jointly form a
good global cover and hence shares our concern for finding rules that work well together.
The TRUNC program of AQ15 deletes those disjunctions of non-probabilistic induced rules
that cover the fewest cases (Michalski et al., 1986a; Michalski et al., 1986b). The reduced
knowledge bases produced by RULEMOD and TRUNC give equal or superior performance.
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7 Summary and Conclusion

Traditional methods of debugging a probabilistic rule set are suited to handling missing
or wrong rules, but not to handling deleterious interactions between good rules. This
paper describes the underlying reason for this phenomenon. We formulated the problem
of minimizing deleterious rule interactions as a bipartite graph minimization problem and
proved that it is NP-hard. A heuristic method was described for solving the graph problem,
called the Sociopathic Reduction Algorithm. In our experiments, the Sociopathic Reduction
Algorithm gave good results.

We believe that the rule set refinement method described in this paper, or its equiv-
alent, is an important component of any learning system for automatic creation of proba-
bilistic rule sets for automated reasoning systems. All such learning systems will confront
the problem of deleterious interactions among good rules, and the problem will require a

global solution method, such as we have described here.

Our future research in this area is to create a theory of sociopathicity that subsumes
all Al techniques for uncertainty reasoning, including certainty factors, Bayesian methods,
probability methods, Dempster-Shafer theory, fuzzy reasoning, belief networks, and non-
monotonic reasoning. For our progress to date, see (Ma and Wilkins, 1990a; Ma and
Wilkins, 1990b; Ma and Wilkins, 1990c).
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Appendix 1: Calculating G.

Consider rules of the form conclude(H, CF) :- E. Then CF = G = G(z;,Z2,23) = empirical

predictive power of rule R, where:

e z; = P(Et|H*) = fraction of the positive instances in which R correctly succeeds

(true positives or false negatives)

e z, = P(E*|H™) = fraction of the negative instances in which R incorrectly succeeds

(false positives or true negatives)

e z3 = P(H*) = fraction of all instances that are positive instances
Given z;,z, 23, let

e z,= P(HY|E") = ;Ef;f(‘,—_;;
If z4 > z3 then G = ﬁ%elseG: ffl::?n

This probabilistic interpretation reflects to the modifications to the certainly factor

model proposed by (Heckerman, 1986).
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